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Abstract. A method for estimating, via the Monte-Carlo simulation, the most often realized diffusion
mechanisms in 2D ordered structures is presented. Taking as an example the diffusion of oxygen ions
in 123 − YBCO high temperature superconductor we propose several diffusion mechanisms and show to
what extent they depend on the temperature and concentration of the diffusing particles. Our results
are compared with the ones proposed earlier on the basis of energy arguments. We find also additional
trajectories, different from those earlier reported in that system.

PACS. 02.70.Lq Monte-Carlo and statistical methods – 66.10.Cb Diffusion and thermal diffusion –
74.72.Bk Y-based cuprates

1 Introduction

Although the diffusion of adatoms on metal surfaces has
been studied for a long time (see e.g. [1]), the details
are still not clear. Theoretical investigations are, in gen-
eral, based on the lattice gas model. Sadiq and Binder [2]
presented an in-depth analysis of diffusion mechanisms
in ordered 2D structures. They restricted themselves to
repulsive interactions between nearest neighboring (NN)
and next-nearest neighboring (NNN) sites. They were also
interested mostly in the low temperature regime. In this
work we investigate the mechanisms of tracer diffusion in
anisotropic systems. Taking as an example the ortho - 1
phase of the ASYNNNI model we present a method for es-
timating the most probable diffusion mechanism and we
show also how this mechanism depends on the tempera-
ture and concentration of the diffusing particles.

Salomons and de Fontaine [3] and LaGraff and
Payne [4] studied the diffusion of oxygen ions within the
basal plane of YBa2Cu3O6+c (123 − YBCO) type high
temperature superconductor using the ASYNNNI model.
Several possible mechanisms of tracer diffusion have been
proposed on the basis of energy arguments [2–4]. However,
neither the role of oxygen content nor oxygen ordering in
the basal plane of YBa2Cu3O6+c in determining its crit-
ical temperature and other physical properties is not yet
clear; for a recent review see [5]. In fact, the oxygen con-
centration and ordering may be an important factor in de-
termining the magnetic and/or electronic properties, like
the existence of Cooper pair-like systems [6,7]. In the same
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temperature range, i.e., about 300 K, an anomalous effect
also occurs in the normal state Hall coefficient [8], as well
as in the concentration dependence of the diffusion coeffi-
cient of oxygen in the basal plane [9–11]. Other anomalous
features at such temperatures have been observed also in
thermal transport properties, like the thermal conductiv-
ity [12].

Therefore it seems interesting to study the mechanisms
of oxygen diffusion in the basal plane of YBa2Cu3O6+c in
the temperature range above the Tc within a strict frame-
work and numerical means. It should be however men-
tioned that the method presented below is not restricted
to YBa2Cu3O6+c but can be applied also to other systems,
like, e.g., diffusion of oxygen on the W(110) surface.

2 The model

The ASY(mmetric) N(ext) N(earest) N(eighbor) I(sing)
model was introduced in [3]. The interaction of a given
particle to its NN is V1, the interaction to a NNN when
mediated by another atom is V2 and a direct one to a NNN
is V3 [13]. A site i can be either empty (ti = 0) or occupied
by an oxygen ion (ti = 1). Hence the Hamiltonian can be
written as [3]

H =
∑
NN

V1 titj +
∑

(NNN)1

V2 titj +
∑

(NNN)2

V3 titj . (1)

In the case of 123 − YBCO, the particle is an oxygen
ion. We take V1 = 0.19 eV; the V2 (= −0.159 eV) in-
teraction is mediated by a Cu atom and the direct one
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Fig. 1. The 123 − YBCO ab-plane structure; circles denote
the O(1) sublattice, i.e., “oxygen chains”, squares - the O(5)
sublattice, i.e., the “empty” sublattice. Full symbols denote
occupied sites. Crosses are copper atoms.

with a NNN is V3 = 0.054 eV [13]. In so doing the
2D square lattice splits into two, mutually interpene-
trating sublattices, conventionally denoted by O(1) and
O(5) (Fig. 1).

Denoting the number of lattice sites by A, and the
number of particles by N , we define the coverage, θ, as

θ = N/A, θ ∈ [ 0 , 1 ]. (2)

It will be useful to introduce also a sublattice density

c = 2 θ, c ∈ [ 0 , 2 ]. (3)

The phase diagram of the ASYNNNI model has been de-
termined in [3]. Around the density c = 1 the model ex-
ists, in a large interval of temperatures, in the ortho-1 (OI)
phase. In the ideal ortho-1 phase (low temperatures and
c = 1), all lattice sites of the O(1) sublattice are filled by
oxygen ions and all sites in the O(5) sublattice are empty.
We have therefore a c (2× 2) structure.

We have investigated the system within the range
c ∈ [0.875, 1.125] out of which detailed data are presented
for three concentrations c around the stoichiometic one,
c = 0.9, 1.0, 1.1. Such a choice encompasses three differ-
ent regions, – vacancies in the O(1) sublattice for c < 1,
completely filled O(1) sublattice and completely empty
O(5) sublattice in the ground state at c = 1, and single
ions (defects) in the O(5) sublattice for c > 1. Notice that
for c = 1 one oxygen vacancy still exists in the unit cell
square.

The model was investigated at two temperatures T =
650 K (kBT ≈ 0.06 eV) and T = 1000 K (kBT ≈ 0.08 eV),
well inside the stability region for the ortho-1 phase. At the
investigated concentrations it has been previously found
that the system organizes itself into long chains of occu-
pied sites in the O(1) sublattice [3,4]. Empty sites in the
filled O(1) lattice, or additional ions appearing in the O(5)
sublattice, are called point defects.

We have used the standard Monte-Carlo method with
Kawasaki dynamics (conserving the number of particles)
and Metropolis algorithm. A particle has been allowed to
jump to one of its NN (provided it was empty) with the
probability given by

Pi→j =
ti
θ

(1− tj)e−β∆E , (4)

where ∆E is the (positive) change of the energy of the
system caused by the jump and β = (kB T )−1.

For computer simulations we have used L×L (L = 56)
square lattice with periodic boundary conditions. For veri-
fying finite size effects a lattice with L = 140 has been used
as well. Typically we have run the program for 400 kMCS
and averaged over 10 initial configurations.

3 The method

The basic quantity characterizing the mobility of the par-
ticles is the average jump frequency

ν = n/N, (5)

where n is the average number of all jumps performed by
the N particles present in the system, in unit time. This is
the same quantity as used by Sadiq and Binder [2] in their
analysis of diffusion mechanisms. Since it is a global aver-
age, it can not yield detailed information about migration
of individual atoms.

It is the aim of the present paper to specify the notion
of a jump frequency in order to account for different pos-
sible paths. Our investigations are based on the following
assumptions:

1. There are two interpenetrating sublattices. One is filled
up with particles having low energies, the other is
empty. Let us recall that in YBa2Cu3O6+c and in the
OI phase, the sublattice O(1) is the filled one and O(5)
– the empty one. To get into the latter a particle has
to overcome an energy barrier.

2. Jumps from the filled sublattice are called fundamen-
tal. They characterize the type of the diffusion process.

3. Jumps from the second sublattice are called auxiliary.
Their frequency determines the effectiveness of the dif-
fusion process.

4. A fundamental jump and the subsequently following
sequence of auxiliary jumps define a diffusive trajec-
tory.
The mechanism of the diffusion is determined by the
preferred diffusive trajectory. Preference is based on
the lowest energy cost. Since in our model only jumps
to NN are allowed, the sequence of auxiliary jumps is
reduced to just one jump.

LaGraf and Payne [4] proposed three fundamental jumps:

1. from the interior (I) of a chain,
2. from an end of a chain. If after the move the particle

does not interact any longer with the other particles
of the chain the jump is called E1,

3. from an end of a chain, but after the move the particle
still interacts with the particles of the chain; this is an
E2 jump,

However to these we add the fourth possibility that the
jumping particle did not interact at all with any particle
before the jump, – it was free (F ). This seems a trivial case
except that an additional information, not present in [4],
occurs due to the situation found after the jump. Indeed
the jumping particle:

1. can still be free (F ),
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Fig. 2. Some fundamental (from the O(1) sublattice) jumps. The starting point of the moving particle is the black circle,
occupied sites are shaded. Circles and squares have the same meaning as in Figure 1.

2. can glue together two chains into a single one, thus
becoming an internal particle (I),

3. can move to the end of a chain with which it did not
previously interact (E1),

4. can stick to the end of a chain with which it already
interacted (E2).

Examples of fundamental jumps are shown in Figure 2,
where the moving particle is marked in black, occupied
sites are shaded, empty ones are white. Double arrows
(like⇒) indicate hops from the O(1) sublattice. In a sim-
ilar way all auxiliary jumps, i.e. from the empty O(5)
sublattice, can be ordered. They will be marked by sin-
gle arrows (like →). Any jump can be now classified as
belonging to one of 16 possible (4 initial × 4 final states)
jumps. We may define the jump frequency for a given type
of a jump (i→ f) as

Fi→f =
ni→f
n

, (6)

where n is the total number of jumps per unit time, and
ni→f is the number of jumps of a given type. Analogously
the frequency of auxiliary hops, Ai→f , may be defined.

The frequencies F and A have been recorded during the
simulations.

On the basis of the fundamental and auxiliary jumps
possible trajectories of a diffusing particle may be
constructed. In principle the trajectories may be of ar-
bitrary length but the complexity of the counting grows
rapidly with the length of the trajectory. Hence we had
to restrict ourselves to two jumps only. The four basic
trajectories are, see Figure 3

S - movement on a straight line,
B - back and forth displacements,
Z - zigzag along the O(1) chains,
N - zigzag normal to the O(1) chains.

During the simulations we have also recorded the
frequency of particular trajectories, defined, like in
equation (7) by

Tk =
Mk

M
, (k = B,Z,N, S) (7)

where Mk is the number of realized trajectories of type k
and M is the total number of observed trajectories.
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Fig. 3. Examples of basic (B, Z, N , S) trajectories.

4 Results

In the simulations the system was first allowed to relax
for ca. 50 to 200 kMCS. Afterwards the simulations were
carried out for another 400 kMCS.

The frequency of the fundamental and auxilliary
jumps, is shown in Tables 1 and 2 respectively for the three
chosen concentrations (c = 0.9, 1.0, 1.1) and two temper-
atures (T = 650 K and T = 1000 K). Jumps contributing
to less than 5% have been omitted from the Tables. One
should notice the symmetry obtained after averaging over
many hops

Fi→f = Af→i, (8)

and valid for all c and T . Frequencies of the four trajecto-
ries recorded during the simulations versus concentration
of the oxygen ions are shown in Figure 4a for T = 650 K
and in Figure 4b for T = 1000 K, respectively.

It is quite clear that in each case most of the particles
move along the B trajectory, hence they do not contribute
to the diffusion.

Leaving aside the B trajectories we may now, with the
help of the Tables and of Figure 4 construct possible mech-
anisms for self-diffusion. Let us remark that our data in-
dicate that the diffusion patterns may be sensitive both
to the temperature and concentration.

For the concentration c = 0.9 and low temperatures
it follows from the Tables that there are many free par-
ticles, while from Figure 4a that the dominant trajectory
is of the Z type. The most probable diffusion mechanism
is then the one proposed by LaGraff and Payne [4] as
shown in Figure 5a. The S trajectories may be realized
by the E1 ⇒ F → E1 sequence shown in Figure 5b. The
equivalent N trajectory is realized if the empty site on
the right chain O(1) in Figure 5b is not above but below
the temporarily occupied O(5) site. This mechanism re-
quires however more vacancies in the O(1) sublattice and
moreover they should come in pairs. We propose it as an
additional mechanism, to the one suggested in [4]. In prin-
ciple other mechanisms, like E1 ⇒ F → F , corresponding
to a S or N trajectory, are possible. They would require
however still more vacancies in the O(1) sublattice, hence
they may play a role only at concentrations lower than
c = 0.9.

(a)

(b)

Fig. 4. Percentage of realized B, Z, N and S trajectories at
a) T = 650 K, b) T = 1000 K. For additional explanations see
the text.

At the highest temperature the number of hops to and
from a free (F ) site decreases but the F ⇒ I jumps ap-
pear, meaning that pairs of defects (• ◦ •) are formed in
the O(5) sublattice. Therefore apart from the trajectories
present at 650 K, there is another possible one, of the Z
type, shown in Figure 5c.
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Table 1. Percentage of fundamental jumps of a given type. Jumps contributing less than 5% are not shown.

c 0.9 1.0 1.1

T [K] jump percentage jump percentage jump percentage

650 E1 ⇒ F 58.60 I ⇒ F 78.36 I ⇒ E2 58.73

F ⇒ F 26.58 E1 ⇒ E2 21.45 I ⇒ I 26.44

1000 E1 ⇒ F 42.17 I ⇒ F 51.03 I ⇒ E2 42.12

F ⇒ F 18.89 E1 ⇒ E2 20.83 I ⇒ I 18.84

F ⇒ I 12.14 I ⇒ E2 10.73 I ⇒ F 12.25

E1 ⇒ E2 7.94 E1 ⇒ F 10.72 E1 ⇒ E2 7.99

Table 2. Percentage of auxiliary jumps of a given type. Jumps contributing less than 5% are not shown.

c 0.9 1.0 1.1

T [K] jump percentage jump percentage jump percentage

650 F → E1 58.59 F → I 78.37 E2 → I 58.74

F → F 26.57 E2 → E1 21.46 I → I 26.44

1000 F → E1 42.21 F → I 51.04 E2 → I 42.09

F → F 18.88 E2 → E1 20.82 I → I 18.83

I → F 12.15 E2 → I 10.83 F → I 12.27

E2 → E1 7.94 F → E1 10.75 E2 → E1 8.1

Fig. 5. Diffusion mechanisms for c = 0.9. Symbol explanations as in Figure 2; a) the mechanism proposed in [4], b) additional
trajectory at low T , c) trajectory proposed for high T .

For c = 0.9 at higher and lower temperatures the dom-
inant mechanism is the Z type trajectory (E1 ⇒ F → E1)
proposed in [4] and shown in Figure 5a. We have found
that at least one mechanism (of the N or S type) at low T
and one more (of the Z type) at high T , are also possible.

In the case of c = 1.0 and low T there are just two
types of fundamental (I ⇒ F, E1 ⇒ E2) and aux-
illiary (F → I, E2 → E1) jumps. There is a pref-
erence for the Z type trajectories, hence the dominant
mechanism should be the synchronous interchange

(motion) of two particles (Z or N trajectories) shown
in Figure 6a and originally proposed, for c = 1.0, by
Salomons and de Fontaine [3]. This mechanism does not
require any alterations in the stoichiometry. If however
some oxygen ions are displaced from the O(1) into the
O(5) sublattice, then other S or N type single particle tra-
jectories (I ⇒ F → I) are also possible (see Fig. 6b). Their
role is greater at high T , where the perfect ordering within
the sublattices is destroyed, as seen in Figure 4 following
an increasing number of the N and S trajectories. Other
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Fig. 6. Diffusion mechanisms for c = 1.0; a) the mechanism proposed in [3] as a Z and N type trajectories for a simultaneous
motion of two particles, marked here by two black circles, b) additional mechanisms proposed by us for a single particle motion.

trajectories constructed from the I ⇒ E2 and E1 ⇒ F
and equivalent auxilliary jumps are possible at high T .
They require the appearance of a pair of vacancies in the
O(1) sublattice, hence they mainly contribute to diffusion
at high temperatures.

It follows from the observed trajectories that the de-
viations from the ideal arrangement of both sublattices
are not large. The increase of the Z,N and S trajectories
connected with such deviations is about 2%, as follows
from Figure 4. The system shows, also at high T , strong
correlations among the oxygen ions, mostly via the Cu
atoms. This is seen from the fact that from the three ba-
sically equivalent trajectories shown in Figure 6a, the Z
has been the most often recorded one.

Notice that the concentration c = 1 is very special,
since more than 3/4 of the trajectories belong to the B
class. Then at low temperatures there is almost only one
contributing mechanism to the diffusion, i.e. the Z trajec-
tory. This highly restricted mechanism may be the funda-
mental reason for the appearance of the V − Λ transition
in the anomalous dependence of the diffusion coefficient
on concentration, observed in [10].

For c = 1.1 at low temperatures again the major con-
tribution comes from just two types of jumps I ⇒ E2 and
I ⇒ I. The dominating trajectory is the N one, being
nearly twice more frequent than the seemingly equivalent
S trajectory. We are unable to explain this asymmetry.
Possible mechanisms leading to the N (or S) trajectory
are I ⇒ E2 → I (Fig. 7a) or I ⇒ I → I (Fig. 7b). The
great number of the former sequences (see Tab. 1) indi-
cates that the point defects in O(5) are isolated. At high T
we have observed an increased number of jumps from the
inside of the O(1) chains, leaving isolated vacancies behind
thus favoring the Z trajectories, as shown in Figure 7c.

One should keep in mind that our data only points
out to some highly probable diffusion patterns but does

not determine them unequivocally nor forbids complicated
patterns to be expected when longer jump sequences are
to be considered.

5 Concluding remarks

We have investigated a method, based on the Monte-
Carlo simulation technique, for determining possible dif-
fusion mechanisms of particles on an incompletely filled
2D plane. We have recorded during the simulations the
frequency of occurence of particular jumps (fundamental
and auxiliary) as well as sequences of the successive jumps.
On that basis we propose several mechanisms for oxygen
diffusion within the basal CuO plane and for the ortho-1
phase of YBa2Cu3O6+c near the 3/4 filling concentration
range, i.e. near c = 1.0.

There have been several papers [3,4] dealing with dif-
fusion mechanisms in 123−YBCO, but the authors have
not discussed the role of the temperature. Here we have
been able to show in what precise range of the parameters
c and T the suggested mechanisms are to be valid. We have
shown which ones are dominating at “low (650 K) temper-
atures”, and the most often probable (short) trajectories.
We have found that there are more possible fundamental
and auxiliary jumps at higher temperatures than there are
at low ones, as one would expect. This indicates that the
diffusion mechanisms are sensitive to both temperature
and concentration of oxygen vacancies. The mechanisms
found by us require, in general, fulfillment of some condi-
tions, like e.g. the presence of vacancies ordered in a spe-
cial way in the O(1) sublattice. Since we have “observed”
such trajectories in the simulations, that means that the
conditions are met, and such pairs of vacancies occur in
the system.
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Fig. 7. Possible trajectories for c = 1.1; a) and b) at T = 650 K
temperatures, and c) at T = 1000 K.

Since we have considered here jumps of the oxygen
ions to NN sites only, we could not comment on the NNN
hopping mechanisms proposed by Rothman et al. [14].
Moreover the simulations have been made for specific in-
teraction parameter V1, V2, V3 values. Even though such
values differ from author(s) to author(s) (and even within
our own investigations), we have chosen values which are
considered to be the best ones and are the most widely
accepted. Large modifications in the relative values could
modify the respective ranks of trajectories. Of course some
situations are improbable from the experimental point of
view from the start.

It is possible to use the method presented above to find
possible mechanisms of oxygen diffusion also in the OII
phase of YBa2Cu3O6+c. There will be many more possi-
ble trajectories, hence the analysis will be more complex.
In principle, the method may also be used in examining
jumps to NNN neighbors [10]. This however would require
considering non-symmetric energy barriers (anisotropy
effects). The problem would lead to much more complex

simulations. Introducing the same barriers for jumps to
all NN does not yield interesting results since a diffusing
particle has to wait longer for any jump if a symmetric
barrier is raised. This is simply equivalent to scaling the
time. Considering jumps to apical sites, which would re-
quire a 3D model, would permit investigation of the role of
such trajectories. They are sometimes claimed to be very
important [15].

In conclusion, we have found that there is more than
a single mechanism of diffusion in a quasi-ordered system
like YBa2Cu3O6+c. The kind of mechanism depends on
the concentration, and to a lesser extent, on the tempera-
ture. In particular, for c > 1 the mechanisms proposed by
us for low and for high temperatures, are different from
those presented in [3,4].
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